Carrollian limit of quadratic gravity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476938" target="_blank" >RIV/00216208:11320/23:10476938 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vT_JtGfnZ1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vT_JtGfnZ1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.124051" target="_blank" >10.1103/PhysRevD.108.124051</a>
Alternative languages
Result language
angličtina
Original language name
Carrollian limit of quadratic gravity
Original language description
We study the Carrollian limit of the (general) quadratic gravity in four dimensions. We find that in order for the Carrollian theory to be a modification of the Carrollian limit of general relativity, the parameters in the action must depend on the speed of light in a specific way. By focusing on the leading and the next-toleading orders in the Carrollian expansion, we show that there are four such nonequivalent Carrollian theories. Imposing conditions to remove tachyons (from the linearized theory), we end up with a classification of Carrollian theories according to the leading-order and next-to-leading-order actions. All modify the Carrollian limit of general relativity with quartic terms of the extrinsic curvature. To the leading order, we show that two theories are equivalent to general relativity, one to R + R2 theory and one to the general quadratic gravity. To the next-to-leading order, two are equivalent to R + R2 while the other two are equivalent to the general quadratic gravity. We study the two theories that are equivalent to R + R2 to the leading order and write their magnetic limit actions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
108
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
124051
UT code for WoS article
001145876400011
EID of the result in the Scopus database
2-s2.0-85180557988