Big Ramsey degrees in the metric setting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10489756" target="_blank" >RIV/00216208:11320/23:10489756 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-019" target="_blank" >https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-019" target="_blank" >10.5817/CZ.MUNI.EUROCOMB23-019</a>
Alternative languages
Result language
angličtina
Original language name
Big Ramsey degrees in the metric setting
Original language description
Oscillation stability is an important concept in Banach space theory which happens to be closely connected to discrete Ramsey theory. For example, Gowers proved oscillation stability for the Banach space using his now famous Ramsey theorem for as the key ingredient. We develop the theory behind this connection and introduce the notion of compact big Ramsey degrees, extending the theory of (discrete) big Ramsey degrees. We prove existence of compact big Ramsey degrees for the Banach space and the Urysohn sphere, with an explicit characterization in the case of l_infinity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-10775S" target="_blank" >GA21-10775S: Ramsey theory in the context of group theory, model theory and topological dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
ISBN
978-80-280-0344-9
ISSN
2788-3116
e-ISSN
—
Number of pages
8
Pages from-to
134-141
Publisher name
Masaryk University Press
Place of publication
Masaryk University, Brno
Event location
Praha
Event date
Aug 28, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—