Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AA4HWA464" target="_blank" >RIV/00216208:11320/23:A4HWA464 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164376341&doi=10.1109%2fTPAMI.2023.3291388&partnerID=40&md5=a1c963e57fa015f3459b548af078abc5" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164376341&doi=10.1109%2fTPAMI.2023.3291388&partnerID=40&md5=a1c963e57fa015f3459b548af078abc5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/tpami.2023.3291388" target="_blank" >10.1109/tpami.2023.3291388</a>
Alternative languages
Result language
angličtina
Original language name
Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank
Original language description
"Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into the training process of dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 29 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, approaching the parser performance which is trained in its own target treebank. © 1979-2012 IEEE."
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
"IEEE Transactions on Pattern Analysis and Machine Intelligence"
ISSN
0162-8828
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
13393-13407
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85164376341