All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ABJVSHNCN" target="_blank" >RIV/00216208:11320/23:BJVSHNCN - isvavai.cz</a>

  • Result on the web

    <a href="https://ejournal.unama.ac.id/index.php/processor/article/view/897" target="_blank" >https://ejournal.unama.ac.id/index.php/processor/article/view/897</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.33998/processor.2023.18.2.897" target="_blank" >10.33998/processor.2023.18.2.897</a>

Alternative languages

  • Result language

    ruština

  • Original language name

    Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19

  • Original language description

    "Sentiment analysis is an activity that is used to analyze public opinion about an incident such as the Ministry of Education and Culture's internet assistance quota during the Covid-19 pandemic through one of the Twitter social media. Twitter is a microblogging platform that is used to write an opinion or opinion about an event that can be used as a source of data used. The Naïve Bayes method and Support Vector Machine (SVM) are methods with a Machine Learning approach that can be used to perform sentiment analysis on Kemdikbudristek policies regarding MoEC Quotas in the process of classifying a tweet based on its emotional level and knowing the accuracy comparison between the Naïve Bayes method and the Support Vector Machine ( SVM)."

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    "Jurnal PROCESSOR"

  • ISSN

    1907-6738

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    9

  • Pages from-to

    183-191

  • UT code for WoS article

  • EID of the result in the Scopus database