Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ABJVSHNCN" target="_blank" >RIV/00216208:11320/23:BJVSHNCN - isvavai.cz</a>
Result on the web
<a href="https://ejournal.unama.ac.id/index.php/processor/article/view/897" target="_blank" >https://ejournal.unama.ac.id/index.php/processor/article/view/897</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33998/processor.2023.18.2.897" target="_blank" >10.33998/processor.2023.18.2.897</a>
Alternative languages
Result language
ruština
Original language name
Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19
Original language description
"Sentiment analysis is an activity that is used to analyze public opinion about an incident such as the Ministry of Education and Culture's internet assistance quota during the Covid-19 pandemic through one of the Twitter social media. Twitter is a microblogging platform that is used to write an opinion or opinion about an event that can be used as a source of data used. The Naïve Bayes method and Support Vector Machine (SVM) are methods with a Machine Learning approach that can be used to perform sentiment analysis on Kemdikbudristek policies regarding MoEC Quotas in the process of classifying a tweet based on its emotional level and knowing the accuracy comparison between the Naïve Bayes method and the Support Vector Machine ( SVM)."
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
"Jurnal PROCESSOR"
ISSN
1907-6738
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
2
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
9
Pages from-to
183-191
UT code for WoS article
—
EID of the result in the Scopus database
—