Unsupervised Deep Representation Learning for Low-Resourced Languages and Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ACDBZTJC8" target="_blank" >RIV/00216208:11320/23:CDBZTJC8 - isvavai.cz</a>
Result on the web
<a href="https://aran.library.nuigalway.ie/bitstream/handle/10379/17767/PhD_Writing_camera_ready.pdf?sequence=1" target="_blank" >https://aran.library.nuigalway.ie/bitstream/handle/10379/17767/PhD_Writing_camera_ready.pdf?sequence=1</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Unsupervised Deep Representation Learning for Low-Resourced Languages and Applications
Original language description
"In this thesis, we introduce novel state-of-the-art deep models which capture global and contextualnsemantic representations of sentences in a document. We focus on building unsupervised deep models tonefficiently exploit the existing unlabelled datasets for feature extraction. Our contribution also includesndesigning state-of-the-art unsupervised sentence embedding models capable of performing a wide range ofncross-lingual tasks for low-resource scenarios. We raise several research questions at the start of the thesisnand we provide answers supported by state-of-the-art experimental results"
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů