All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Morphosyntactic probing of multilingual BERT models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ACPTG9Z2P" target="_blank" >RIV/00216208:11320/23:CPTG9Z2P - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161321791&doi=10.1017%2fS1351324923000190&partnerID=40&md5=92981f23f267b885a8052ce234546706" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161321791&doi=10.1017%2fS1351324923000190&partnerID=40&md5=92981f23f267b885a8052ce234546706</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/s1351324923000190" target="_blank" >10.1017/s1351324923000190</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Morphosyntactic probing of multilingual BERT models

  • Original language description

    "We introduce an extensive dataset for multilingual probing of morphological information in language models (247 tasks across 42 languages from 10 families), each consisting of a sentence with a target word and a morphological tag as the desired label, derived from the Universal Dependencies treebanks. We find that pre-trained Transformer models (mBERT and XLM-RoBERTa) learn features that attain strong performance across these tasks. We then apply two methods to locate, for each probing task, where the disambiguating information resides in the input. The first is a new perturbation method that masks various parts of context; the second is the classical method of Shapley values. The most intriguing finding that emerges is a strong tendency for the preceding context to hold more information relevant to the prediction than the following context. © The Author(s), 2023. Published by Cambridge University Press."

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    "Natural Language Engineering"

  • ISSN

    1351-3249

  • e-ISSN

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    1-40

  • UT code for WoS article

    001007784400001

  • EID of the result in the Scopus database

    2-s2.0-85161321791