All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural Contrastive Pretraining for Cross-Lingual Comprehension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AHMJ9ZHA9" target="_blank" >RIV/00216208:11320/23:HMJ9ZHA9 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175492961&partnerID=40&md5=11f69d8b05d3c4ce244f768fa8b01ab7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175492961&partnerID=40&md5=11f69d8b05d3c4ce244f768fa8b01ab7</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural Contrastive Pretraining for Cross-Lingual Comprehension

  • Original language description

    "Multilingual language models trained using various pre-training tasks like mask language modeling (MLM) have yielded encouraging results on a wide range of downstream tasks. Despite the promising performances, structural knowledge in cross-lingual corpus is less explored in current works, leading to the semantic misalignment. In this paper, we propose a new pre-training task named Structural Contrast Pretraining (SCP) to align the structural words in a parallel sentence, improving the models' linguistic versatility and their capacity to understand representations in multilingual languages. Concretely, SCP treats each structural word in source and target languages as a positive pair. We further propose Cross-lingual Momentum Contrast (CL-MoCo) to optimize negative pairs by maintaining a large size of the queue. CL-MoCo extends the original MoCo approach into cross-lingual training and jointly optimizes the source-to-target language and target-to-source language representations in SCP, resulting in a more suitable encoder for cross-lingual transfer learning. We conduct extensive experiments and prove the effectiveness of our resulting model, named XLM-SCP, on three cross-lingual tasks across five datasets such as MLQA, WikiAnn. Our codes are available at https://github.com/nuochenpku/SCP. © 2023 Association for Computational Linguistics."

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    "Proc. Annu. Meet. Assoc. Comput Linguist."

  • ISBN

    978-195942962-3

  • ISSN

    0736-587X

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    2042-2057

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    Melaka, Malaysia

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article