Fine-grained position helps memorizing more, a novel music compound transformer model with feature interaction fusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AI2BNJU9U" target="_blank" >RIV/00216208:11320/23:I2BNJU9U - isvavai.cz</a>
Result on the web
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/25650" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/25650</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v37i4.25650" target="_blank" >10.1609/aaai.v37i4.25650</a>
Alternative languages
Result language
angličtina
Original language name
Fine-grained position helps memorizing more, a novel music compound transformer model with feature interaction fusion
Original language description
"Due to the particularity of the simultaneous occurrence of multiple events in music sequences, compound Transformer is proposed to deal with the challenge of long sequences. However, there are two deficiencies in the compound Transformer."
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
"Proceedings of the AAAI Conference on Artificial Intelligence"
ISBN
978-1-57735-880-0
ISSN
2159-5399
e-ISSN
—
Number of pages
10
Pages from-to
5203-5212
Publisher name
arXiv
Place of publication
—
Event location
Toronto, Canada
Event date
Jan 1, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—