All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APPL8V2SZ" target="_blank" >RIV/00216208:11320/23:PPL8V2SZ - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172014448&doi=10.1007%2f978-3-031-40498-6_6&partnerID=40&md5=4028296fb87c614e412d23ab8d6349f6" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172014448&doi=10.1007%2f978-3-031-40498-6_6&partnerID=40&md5=4028296fb87c614e412d23ab8d6349f6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40498-6_6" target="_blank" >10.1007/978-3-031-40498-6_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines

  • Original language description

    "This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG."

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    "Lect. Notes Comput. Sci."

  • ISBN

    978-303140497-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    58-69

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

  • Event location

    Cham

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article