All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Macular: A Multi-Task Adversarial Framework for Cross-Lingual Natural Language Understanding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AQJ4PIY6M" target="_blank" >RIV/00216208:11320/23:QJ4PIY6M - isvavai.cz</a>

  • Result on the web

    <a href="https://dl.acm.org/doi/10.1145/3580305.3599864" target="_blank" >https://dl.acm.org/doi/10.1145/3580305.3599864</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3580305.3599864" target="_blank" >10.1145/3580305.3599864</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Macular: A Multi-Task Adversarial Framework for Cross-Lingual Natural Language Understanding

  • Original language description

    "Cross-lingual natural language understanding~(NLU) aims to train NLU models on a source language and apply the models to NLU tasks in target languages, and is a fundamental task for many cross-language applications."

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    "Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining"

  • ISBN

    9798400701030

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    5061-5070

  • Publisher name

    ACM

  • Place of publication

    Long Beach CA USA

  • Event location

    Long Beach CA USA

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article