Transformer based named entity recognition for place name extraction from unstructured text
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AUQTD4BJB" target="_blank" >RIV/00216208:11320/23:UQTD4BJB - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/13658816.2022.2133125" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/13658816.2022.2133125</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/13658816.2022.2133125" target="_blank" >10.1080/13658816.2022.2133125</a>
Alternative languages
Result language
angličtina
Original language name
Transformer based named entity recognition for place name extraction from unstructured text
Original language description
"Place names embedded in online natural language text present a useful source of geographic information. Despite this, many methods for the extraction of place names from text use pre-trained models that were not explicitly designed for this task. Our paper builds five custom-built Named Entity Recognition (NER) models and evaluates them against three popular pre-built models for place name extraction."
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
"International Journal of Geographical Information Science"
ISSN
1365-8816
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
747-766
UT code for WoS article
—
EID of the result in the Scopus database
—