All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Named Entity Recognition for Low-Resource Languages - Profiting from Language Families

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AXLWH28K3" target="_blank" >RIV/00216208:11320/23:XLWH28K3 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175337793&partnerID=40&md5=3aff693e3e64582a78b502f12caa38ae" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175337793&partnerID=40&md5=3aff693e3e64582a78b502f12caa38ae</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Named Entity Recognition for Low-Resource Languages - Profiting from Language Families

  • Original language description

    "Machine learning drives forward the development in many areas of Natural Language Processing (NLP). Until now, many NLP systems and research are focusing on high-resource languages, i.e. languages for which many data resources exist. Recently, so-called low-resource languages increasingly come into focus. In this context, multi-lingual language models, which are trained on related languages to a target low-resource language, may enable NLP tasks on this low-resource language. In this work, we investigate the use of multi-lingual models for Named Entity Recognition (NER) for low-resource languages. We consider the West Slavic language family and the low-resource languages Upper Sorbian and Kashubian. Three RoBERTa models were trained from scratch, two mono-lingual models for Czech and Polish, and one bi-lingual model for Czech and Polish. These models were evaluated on the NER downstream task for Czech, Polish, Upper Sorbian, and Kashubian, and compared to existing state-of-the-art models such as RobeCzech, HerBERT, and XLM-R. The results indicate that the mono-lingual models perform better on the language they were trained on, and both the mono-lingual and language family models outperform the large multi-lingual model in downstream tasks. Overall, the study shows that low-resource West Slavic languages can benefit from closely related languages and their models. © 2023 Association for Computational Linguistics."

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    "EACL - Workshop Slav. Nat. Lang. Process., Proc. SlavicNLP"

  • ISBN

    978-195942957-9

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

  • Event location

    Melaka, Malaysia

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article