All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Real-time changepoint detection in a nonlinear expectile model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10472400" target="_blank" >RIV/00216208:11320/24:10472400 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lcp~7jjdv1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lcp~7jjdv1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00184-023-00904-6" target="_blank" >10.1007/s00184-023-00904-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Real-time changepoint detection in a nonlinear expectile model

  • Original language description

    An online changepoint detection procedure based on conditional expectiles is introduced. The key contribution is threefold: nonlinearity of the underlying model improves the overall flexibility while a parametric form of the unknown regression function preserves a simple and straightforward interpretation; The conditional expectiles, well-known in econometrics for being the only coherent and elicitable risk measure, introduce additional robustness-especially with respect to asymmetric error distributions common in various types of data; The proposed statistical test is proved to be consistent and the distribution under the null hypothesis does not depend on the functional form of the underlying model nor the unknown parameters. Empirical properties of the proposed real-time changepoint detection test are investigated in a simulation study and a practical applicability is illustrated using the Covid-19 prevalence data from Prague.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA21-10768S" target="_blank" >GA21-10768S: Advanced Econometric Models for Option Pricing II – AdEMOP2</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Metrika

  • ISSN

    0026-1335

  • e-ISSN

    1435-926X

  • Volume of the periodical

    87

  • Issue of the periodical within the volume

    Feb 2024

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    27

  • Pages from-to

    105-131

  • UT code for WoS article

    000960081900001

  • EID of the result in the Scopus database

    2-s2.0-85151345662