All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Exact Computation of Tukey Depth Central Regions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10472949" target="_blank" >RIV/00216208:11320/24:10472949 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=US989TMV_2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=US989TMV_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10618600.2023.2257781" target="_blank" >10.1080/10618600.2023.2257781</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Exact Computation of Tukey Depth Central Regions

  • Original language description

    The Tukey (or halfspace) depth extends nonparametric methods toward multivariate data. The multivariate analogues of the quantiles are the central regions of the Tukey depth, defined as sets of points in the d-dimensional space whose Tukey depth exceeds given thresholds k. We address the problem of fast and exact computation of those central regions. First, we analyze an efficient Algorithm (A) from Liu, Mosler, and Mozharovskyi, and prove that it yields exact results in dimension d = 2, or for a low threshold k in arbitrary dimension. We provide examples where Algorithm (A) fails to recover the exact Tukey depth region for d &gt; 2, and propose a modification that is guaranteed to be exact. We express the problem of computing the exact central region in its dual formulation, and use that viewpoint to demonstrate that further substantial improvements to our algorithm are unlikely. An efficient C++ implementation of our exact algorithm is freely available in the R package TukeyRegion.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational and Graphical Statistics

  • ISSN

    1061-8600

  • e-ISSN

    1537-2715

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    699-713

  • UT code for WoS article

    001122849600001

  • EID of the result in the Scopus database

    2-s2.0-85177442788