GPU-acceleration of neighborhood-based dimensionality reduction algorithm EmbedSOM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10481543" target="_blank" >RIV/00216208:11320/24:10481543 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3649411.3649414" target="_blank" >https://doi.org/10.1145/3649411.3649414</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3649411.3649414" target="_blank" >10.1145/3649411.3649414</a>
Alternative languages
Result language
angličtina
Original language name
GPU-acceleration of neighborhood-based dimensionality reduction algorithm EmbedSOM
Original language description
Dimensionality reduction methods have found vast applications as visualization tools in diverse areas of science. Although many different methods exist, their performance is often insufficient for providing quick insight into many contemporary datasets. In this paper, we propose a highly optimized GPU implementation of EmbedSOM, a dimensionality reduction algorithm based on self-organizing maps. We detail the optimizations of k-NN search and 2D projection kernels which comprise the core of the algorithm. To tackle the thread divergence and low arithmetic intensity, we use a modified bitonic sort for k-NN search and a projection kernel that utilizes vector loads and register caches. The evaluated performance benchmarks indicate that the optimized EmbedSOM implementation is capable of projecting over 30 million individual data points per second.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GPGPU '24: Proceedings of the 16th Workshop on General Purpose Processing Using GPU
ISBN
979-8-4007-1817-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
13-18
Publisher name
Association for Computing Machinery
Place of publication
New York, NY, USA
Event location
Edinburgh
Event date
Mar 2, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001223947800003