Error analysis for local discontinuous Galerkin semidiscretization of Richards' equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10481683" target="_blank" >RIV/00216208:11320/24:10481683 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5k3o4E3nQY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5k3o4E3nQY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drae013" target="_blank" >10.1093/imanum/drae013</a>
Alternative languages
Result language
angličtina
Original language name
Error analysis for local discontinuous Galerkin semidiscretization of Richards' equation
Original language description
This paper concerns an error analysis of the space semidiscrete scheme for the Richards' equation modeling flows in variably saturated porous media. This nonlinear parabolic partial differential equation can degenerate; namely, we consider the case where the time derivative term can vanish, i.e., the fast-diffusion type of degeneracy. We discretize the Richards' equation by the local discontinuous Galerkin (LDG) method, which provides high order accuracy and preserves stability. Due to the nonlinearityof the problem, special techniques for numerical analysis of the scheme are required. In particular, we combine two partial error bounds using continuous mathematical induction and derive a priori error estimates with respect to the spatial discretization parameter and the Hölder coefficient of the nonlinear temporal derivative. Finally, the theoretical results are supported by numerical experiments, including cases beyond the assumptions of the theoretical results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
1464-3642
Volume of the periodical
45
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
51
Pages from-to
580-630
UT code for WoS article
001219731400001
EID of the result in the Scopus database
2-s2.0-85217023329