A Lagrangian relaxation algorithm for stochastic fixed interval scheduling with non-identical machines and classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484217" target="_blank" >RIV/00216208:11320/24:10484217 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8mP3auR6ik" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8mP3auR6ik</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cor.2024.106542" target="_blank" >10.1016/j.cor.2024.106542</a>
Alternative languages
Result language
angličtina
Original language name
A Lagrangian relaxation algorithm for stochastic fixed interval scheduling with non-identical machines and classes
Original language description
This paper deals with operational fixed interval scheduling problems under uncertainty caused by random delays. This stochastic programming problem has a deterministic reformulation based on network flow under the assumption that the machines are identical and the multivariate distribution of random delays follows an Archimedean copula. In this paper, we focus on the problem with heterogeneous machines and jobs classes. The deterministic problem with no delays and more than one machine type has been shown to be NP-hard. We generalize the deterministic reformulation of the stochastic problem with random delays for non-identical (heterogeneous) machines. This formulation for more than one machine type loses an important property of total unimodularity that holds for identical machines reformulation using the network flow problem. Therefore, an algorithm based on the Lagrangian relaxation is derived and implemented together with an efficient upper bounding heuristic. Its efficiency is confirmed by solving a large number of simulated instances.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA22-11867S" target="_blank" >GA22-11867S: Advanced operational research methods for optimal decision-making in waste management</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers and Operations Research
ISSN
0305-0548
e-ISSN
1873-765X
Volume of the periodical
2024
Issue of the periodical within the volume
164
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
106542
UT code for WoS article
001166378400001
EID of the result in the Scopus database
2-s2.0-85182746366