Electrochemical dissolution of PtRu/C: Effect of potential, fuels, and temperature
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484661" target="_blank" >RIV/00216208:11320/24:10484661 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kNbKKLz5p8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kNbKKLz5p8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2024.144764" target="_blank" >10.1016/j.electacta.2024.144764</a>
Alternative languages
Result language
angličtina
Original language name
Electrochemical dissolution of PtRu/C: Effect of potential, fuels, and temperature
Original language description
Over the last decade, in situ or online inductively coupled plasma mass spectrometry (ICP-MS) has been established as a powerful tool for time- and potential-resolved assessment of electrocatalyst dissolution stability. On the other hand, much more accessible for practical realization ex situ ICP-MS studies in three-electrode cells are not commonly carried out. Still, they can offer valuable insights into catalyst degradation during prolonged accelerated stress tests, thus complementing the online measurements. This work presents an example of how both techniques can be used jointly to study the effect of potential, fuels (isopropanol and glycerol), and temperature on PtRu/C dissolution. PtRu/C is chosen for its potential use as an electrocatalyst in fuel cells and electrosynthesis. Ru is a significantly less noble metal, so it is anticipated to dissolve preferentially, resulting in a loss of the electrocatalyst's functionality. Elucidating more light into dissolution behavior and the environment's role can help develop mitigating strategies to minimize such degradation. Our study reveals that potential has a significant effect on the dissolution of both metals. On the contrary, fuels only affect Ru dissolution, with trends varying depending on the fuel. Temperature again affects the stability of both metals, increasing Pt dissolution with temperature. In the case of Ru, however, in certain conditions, metal dissolution decreases at an elevated temperature. Two additional complementary surface-sensitive techniques, i.e., , Cu underpotential deposition and transmission electron microscopy, were used to investigate how Pt and Ru dissolution change their surface concentration. The finding opens the possibility of PtRu/C lifetime prolonging at applications where the potential reaches up to 1.0 V RHE .
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica Acta
ISSN
0013-4686
e-ISSN
1873-3859
Volume of the periodical
502
Issue of the periodical within the volume
20 Oct
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
144764
UT code for WoS article
001294334000001
EID of the result in the Scopus database
2-s2.0-85200799689