All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enhanced triplet superconductivity in next-generation ultraclean UTe2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484834" target="_blank" >RIV/00216208:11320/24:10484834 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qa1xN5pXRb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qa1xN5pXRb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1073/pnas.2403067121" target="_blank" >10.1073/pnas.2403067121</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enhanced triplet superconductivity in next-generation ultraclean UTe2

  • Original language description

    The unconventional superconductor UTe2 exhibits numerous signatures of spin-triplet superconductivity-a rare state of matter which could enable quantum computation protected against decoherence. UTe2 possesses a complex phase landscape comprising two magnetic field-induced superconducting phases, a metamagnetic transition to a field-polarized state, along with pair- and charge-density wave orders. However, contradictory reports between studies performed on UTe2 specimens of varying quality have severely impeded theoretical efforts to understand the microscopic origins of the exotic superconductivity. Here, we report a comprehensive suite of high magnetic field measurements on a generation of pristine quality UTe2 crystals. Our experiments reveal a significantly revised high magnetic field superconducting phase diagram in the ultraclean limit, showing a pronounced sensitivity of field-induced superconductivity to the presence of crystalline disorder. We employ a Ginzburg-Landau model that excellently captures this acute dependence on sample quality. Our results suggest that in close proximity to a field-induced metamagnetic transition the enhanced role of magnetic fluctuations-that are strongly suppressed by disorder-is likely responsible for tuning UTe2 between two distinct spin-triplet superconducting phases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the National Academy of Sciences of the United States of America

  • ISSN

    0027-8424

  • e-ISSN

    1091-6490

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    37

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    e2403067121

  • UT code for WoS article

    001353476600005

  • EID of the result in the Scopus database

    2-s2.0-85203420097