Double quantum dot Andreev molecules: Phase diagrams and critical evaluation of effective models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10486469" target="_blank" >RIV/00216208:11320/24:10486469 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/24:00599973
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q.WqUZ5tGD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q.WqUZ5tGD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.110.134506" target="_blank" >10.1103/PhysRevB.110.134506</a>
Alternative languages
Result language
angličtina
Original language name
Double quantum dot Andreev molecules: Phase diagrams and critical evaluation of effective models
Original language description
This paper systematically investigates the phase diagram of a parallel double-quantum-dot Andreev molecule, where the two quantum dots are coupled to a common superconducting lead. Using the numerical renormalization group method, we map out the evolution of the ground state across a wide parameter space of level detunings, size of the superconducting gap, lead couplings, and interdot coupling strength. The intricate phase diagrams feature singlet, doublet, and a relatively uncommon triplet ground states, with the latter being a distinct signature of strong lead-mediated interactions between the quantum dots. We benchmark the applicability of simplified effective models, including the atomic limit and zero-bandwidth approximations, in capturing the complex behavior of this parallel configuration. Our analysis reveals severe limitations of these models, underscoring the necessity for maximal caution when extrapolating beyond their tested validity. In particular, all effective models except for the extended version of the zero-bandwidth approximation failed in reproducing the triplet ground state and made several false predictions. These findings provide crucial insights for interpreting experimental observations and designing superconducting devices based on quantum-dot architectures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GF23-05263K" target="_blank" >GF23-05263K: Superconducting nanohybrids out of equilibrium</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Volume of the periodical
110
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
134506
UT code for WoS article
001333775600003
EID of the result in the Scopus database
2-s2.0-85206473870