All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10487986" target="_blank" >RIV/00216208:11320/24:10487986 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.rqPZkIUZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.rqPZkIUZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/bsl.2023.40" target="_blank" >10.1017/bsl.2023.40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS

  • Original language description

    Cook and Reckhow [5] pointed out that $mathcal {N}mathcal {P} neq comathcal {N}mathcal {P}$ iff there is no propositional proof system that admits polynomial size proofs of all tautologies. The theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus on a conjecture from [16] in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows:There exists a p-time function g stretching each input by one bit such that its range $rng(g)$ intersects all infinite $mathcal {N}mathcal {P}$ sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from [18] is a good candidate for g. We define a new hardness property of generators, the $bigvee $ -hardness, and show that one specific gadget generator is the $bigvee $ -hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite $mathcal {N}mathcal {P}$ sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite $mathcal {N}mathcal {P}$ sets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of Symbolic Logic

  • ISSN

    1079-8986

  • e-ISSN

    1943-5894

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    20-40

  • UT code for WoS article

    001195451000001

  • EID of the result in the Scopus database

    2-s2.0-85178007044