Approximation properties of torsion classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488360" target="_blank" >RIV/00216208:11320/24:10488360 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q5KOyhmDQr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q5KOyhmDQr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.13169" target="_blank" >10.1112/blms.13169</a>
Alternative languages
Result language
angličtina
Original language name
Approximation properties of torsion classes
Original language description
We strengthen a result of Bagaria and Magidor (Trans.Amer. Math. Soc. 366 (2014), no. 4, 1857-1877) about the relationship between large cardinals and torsion classes of abelian groups, and prove that (1) the Maximum Deconstructibility principle introduced in Cox (J. Pure Appl. Algebra 226 (2022), no. 5) requires large cardinals; it sits, implication-wise, between Vopěnka's Principle and the existence of an ????1-strongly compact cardinal.(2) While deconstructibility of a class of modules always implies the precovering property by Saorín and Šťovíček (Adv. Math. 228 (2011), no. 2, 968-1007), the concepts are (consistently) nonequivalent, even for classes of abelian groups closed under extensions, homomorphic images, and colimits
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
56
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
3819-3828
UT code for WoS article
001332156500001
EID of the result in the Scopus database
2-s2.0-85206668723