All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation properties of torsion classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488360" target="_blank" >RIV/00216208:11320/24:10488360 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q5KOyhmDQr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q5KOyhmDQr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.13169" target="_blank" >10.1112/blms.13169</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation properties of torsion classes

  • Original language description

    We strengthen a result of Bagaria and Magidor (Trans.Amer. Math. Soc. 366 (2014), no. 4, 1857-1877) about the relationship between large cardinals and torsion classes of abelian groups, and prove that (1) the Maximum Deconstructibility principle introduced in Cox (J. Pure Appl. Algebra 226 (2022), no. 5) requires large cardinals; it sits, implication-wise, between Vopěnka&apos;s Principle and the existence of an ????1-strongly compact cardinal.(2) While deconstructibility of a class of modules always implies the precovering property by Saorín and Šťovíček (Adv. Math. 228 (2011), no. 2, 968-1007), the concepts are (consistently) nonequivalent, even for classes of abelian groups closed under extensions, homomorphic images, and colimits

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    3819-3828

  • UT code for WoS article

    001332156500001

  • EID of the result in the Scopus database

    2-s2.0-85206668723