All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamical phase transitions in graph cellular automata

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489457" target="_blank" >RIV/00216208:11320/24:10489457 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xMR-wSPvy~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xMR-wSPvy~</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevE.109.044312" target="_blank" >10.1103/PhysRevE.109.044312</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamical phase transitions in graph cellular automata

  • Original language description

    Discrete dynamical systems can exhibit complex behavior from the iterative application of straightforward local rules. A famous class of examples comes from cellular automata whose global dynamics are notoriously challenging to analyze. To address this, we relax the regular connectivity grid of cellular automata to a random graph, which gives the class of graph cellular automata. Using the dynamical cavity method and its backtracking version, we show that this relaxation allows us to derive asymptotically exact analytical results on the global dynamics of these systems on sparse random graphs. Concretely, we showcase the results on a specific subclass of graph cellular automata with &quot;conforming nonconformist&quot; update rules, which exhibit dynamics akin to opinion formation. Such rules update a node&apos;s state according to the majority within their own neighborhood. In cases where the majority leads only by a small margin over the minority, nodes may exhibit nonconformist behavior. Instead of following the majority, they either maintain their own state, switch it, or follow the minority. For configurations with different initial biases towards one state we identify sharp dynamical phase transitions in terms of the convergence speed and attractor types. From the perspective of opinion dynamics this answers when consensus will emerge and when two opinions coexist almost indefinitely.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review E

  • ISSN

    2470-0045

  • e-ISSN

    2470-0053

  • Volume of the periodical

    109

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    044312

  • UT code for WoS article

    001226393400001

  • EID of the result in the Scopus database

    2-s2.0-85190826180