All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Circuit Equivalence in 2-Nilpotent Algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489649" target="_blank" >RIV/00216208:11320/24:10489649 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.STACS.2024.45" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2024.45</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2024.45" target="_blank" >10.4230/LIPIcs.STACS.2024.45</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Circuit Equivalence in 2-Nilpotent Algebras

  • Original language description

    The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether two circuits over A compute the same function or not. This problem not only generalises the equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models the problem of checking identities in A. In this paper we prove that Ceqv(A) is an element of P, if A is a finite 2-nilpotent algebra from a congruence modular variety.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

  • ISSN

    1868-8969

  • e-ISSN

    1868-8969

  • Number of pages

    17

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Wadern

  • Event location

    Clermont-Ferrand

  • Event date

    Mar 12, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001300393400045