Circuit Equivalence in 2-Nilpotent Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489649" target="_blank" >RIV/00216208:11320/24:10489649 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.STACS.2024.45" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2024.45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2024.45" target="_blank" >10.4230/LIPIcs.STACS.2024.45</a>
Alternative languages
Result language
angličtina
Original language name
Circuit Equivalence in 2-Nilpotent Algebras
Original language description
The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether two circuits over A compute the same function or not. This problem not only generalises the equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models the problem of checking identities in A. In this paper we prove that Ceqv(A) is an element of P, if A is a finite 2-nilpotent algebra from a congruence modular variety.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
—
ISSN
1868-8969
e-ISSN
1868-8969
Number of pages
17
Pages from-to
—
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Wadern
Event location
Clermont-Ferrand
Event date
Mar 12, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001300393400045