All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a Generalized Auslander-Reiten Conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489704" target="_blank" >RIV/00216208:11320/24:10489704 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LhwVavY0dk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LhwVavY0dk</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10468-024-10271-z" target="_blank" >10.1007/s10468-024-10271-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a Generalized Auslander-Reiten Conjecture

  • Original language description

    It is well-known that the generalized Auslander-Reiten condition (GARC) and the symmetric Auslander condition (SAC) are equivalent, and (GARC) implies that the Auslander-Reiten condition (ARC). In this paper we explore (SAC) along with the several canonical change of rings R -&gt; Sdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$R rightarrow S$$end{document}. First, we prove the equivalence of (SAC) for R and R/xR, where x is a non-zerodivisor on R, and the equivalence of (SAC) and (SACC) for rings with positive depth, where (SACC) is the symmetric Auslander condition for modules with constant rank. The latter assertion affirmatively answers a question posed by Celikbas and Takahashi. Secondly, for a ring homomorphism R -&gt; Sdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$R rightarrow S$$end{document}, we prove that if S satisfies (SAC) (resp. (ARC)), then R also satisfies (SAC) (resp. (ARC)) if the flat dimension of S over R is finite. We also prove that (SAC) holds for R implies that (SAC) holds for S when R is Gorenstein and S=R/Q &amp; ell;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$S=R/Q&lt;^&gt;ell $$end{document}, where Q is generated by a regular sequence of R and the length of the sequence is at least &amp; ell;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$ell $$end{document}. This is a consequence of more general results about Ulrich ideals proved in this paper. Applying these results to determinantal rings and numerical semigroup rings, we provide new classes of rings satisfying (SAC). A relation between (SAC) and an invariant related to the finitistic extension degree is also explored.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebras and Representation Theory

  • ISSN

    1386-923X

  • e-ISSN

    1572-9079

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

    1581-1602

  • UT code for WoS article

    001226636500001

  • EID of the result in the Scopus database

    2-s2.0-85193233594