Partitions into powers of an algebraic number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489810" target="_blank" >RIV/00216208:11320/24:10489810 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SJndE79QPs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SJndE79QPs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11139-024-00845-2" target="_blank" >10.1007/s11139-024-00845-2</a>
Alternative languages
Result language
angličtina
Original language name
Partitions into powers of an algebraic number
Original language description
We study partitions of complex numbers as sums of non-negative powers of a fixed algebraic number betadocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$beta $$end{document}. We prove that if betadocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$ beta $$end{document} is real quadratic, then the number of partitions is always finite if and only if some conjugate of betadocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$beta $$end{document} is larger than 1. Further, we show that for betadocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$beta $$end{document} satisfying a certain condition, the partition function attains all non-negative integers as values.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ramanujan Journal
ISSN
1382-4090
e-ISSN
1572-9303
Volume of the periodical
64
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
537-551
UT code for WoS article
001204118500001
EID of the result in the Scopus database
2-s2.0-85190665988