A generalization of Kummer theory to Hopf-Galois extensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489835" target="_blank" >RIV/00216208:11320/24:10489835 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E17xcV4ciL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E17xcV4ciL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2024.07.017" target="_blank" >10.1016/j.jalgebra.2024.07.017</a>
Alternative languages
Result language
angličtina
Original language name
A generalization of Kummer theory to Hopf-Galois extensions
Original language description
We introduce a condition for Hopf-Galois extensions that generalizes the notion of Kummer Galois extension. Namely, an H-Galois extension L/K is H-Kummer if L can be generated by adjoining to K a finite set S of eigenvectors for the action of the Hopf algebra Hon L. This extends the classical Kummer condition for the classical Galois structure. With this new perspective, we shall characterize a class of H-Kummer extensions L/K as radical extensions that are linearly disjoint with the n-th cyclotomic extension of K. This result generalizes the description of Kummer Galois extensions as radical extensions of a field containing the n-th roots of the unity. The main tool is the construction of a product Hopf-Galois structure on the compositum of almost classically Galois extensions L-1/K, L-2/K such that L-1 boolean AND M-2 = L-2 boolean AND M-1 = K, where Mi is a field such that LiMi = (L) over tilde (i), the normal closure of L-i/K. When L/K is an extension of number or p-adic fields, we shall derive criteria on the freeness of the ring of integers O-L over its associated order in an almost classically Galois structure on L/K. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
660
Issue of the periodical within the volume
December 2024
Country of publishing house
US - UNITED STATES
Number of pages
46
Pages from-to
190-235
UT code for WoS article
001285867600001
EID of the result in the Scopus database
2-s2.0-85199959732