All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A generalization of Kummer theory to Hopf-Galois extensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489835" target="_blank" >RIV/00216208:11320/24:10489835 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E17xcV4ciL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E17xcV4ciL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2024.07.017" target="_blank" >10.1016/j.jalgebra.2024.07.017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A generalization of Kummer theory to Hopf-Galois extensions

  • Original language description

    We introduce a condition for Hopf-Galois extensions that generalizes the notion of Kummer Galois extension. Namely, an H-Galois extension L/K is H-Kummer if L can be generated by adjoining to K a finite set S of eigenvectors for the action of the Hopf algebra Hon L. This extends the classical Kummer condition for the classical Galois structure. With this new perspective, we shall characterize a class of H-Kummer extensions L/K as radical extensions that are linearly disjoint with the n-th cyclotomic extension of K. This result generalizes the description of Kummer Galois extensions as radical extensions of a field containing the n-th roots of the unity. The main tool is the construction of a product Hopf-Galois structure on the compositum of almost classically Galois extensions L-1/K, L-2/K such that L-1 boolean AND M-2 = L-2 boolean AND M-1 = K, where Mi is a field such that LiMi = (L) over tilde (i), the normal closure of L-i/K. When L/K is an extension of number or p-adic fields, we shall derive criteria on the freeness of the ring of integers O-L over its associated order in an almost classically Galois structure on L/K. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    660

  • Issue of the periodical within the volume

    December 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    46

  • Pages from-to

    190-235

  • UT code for WoS article

    001285867600001

  • EID of the result in the Scopus database

    2-s2.0-85199959732