Conditions for equality in Anderson's theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490147" target="_blank" >RIV/00216208:11320/24:10490147 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j7egk5v_dy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j7egk5v_dy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spl.2024.110094" target="_blank" >10.1016/j.spl.2024.110094</a>
Alternative languages
Result language
angličtina
Original language name
Conditions for equality in Anderson's theorem
Original language description
The classical Anderson theorem is a well-known result relevant to multivariate statistics and probability. It establishes an integral inequality for symmetric quasiconcave functions over a shifted symmetric convex set. The aim of this note is twofold. First, we provide necessary and sufficient conditions for equality in Anderson's theorem, extending the result of Soms (1991). Second, we propose a set of tractable requirements that guarantee strict inequality in Anderson's theorem. Our results are used to characterize the independence of Gaussian -distributed random variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GA23-05737S" target="_blank" >GA23-05737S: Functional Fourier Data Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Statistics and Probability Letters
ISSN
0167-7152
e-ISSN
1879-2103
Volume of the periodical
209
Issue of the periodical within the volume
June 2024
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
110094
UT code for WoS article
001221727000001
EID of the result in the Scopus database
2-s2.0-85186346220