Known-Item Search in Video: An Eye Tracking-Based Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490637" target="_blank" >RIV/00216208:11320/24:10490637 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3652583.3658119" target="_blank" >https://doi.org/10.1145/3652583.3658119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3652583.3658119" target="_blank" >10.1145/3652583.3658119</a>
Alternative languages
Result language
angličtina
Original language name
Known-Item Search in Video: An Eye Tracking-Based Study
Original language description
Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-21696S" target="_blank" >GA22-21696S: Deep Visual Representations of Unstructured Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS OF THE 14TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024
ISBN
979-8-4007-0619-6
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
311-319
Publisher name
ASSOC COMPUTING MACHINERY
Place of publication
NEW YORK
Event location
Phuket
Event date
Jun 10, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001282078400035