Holes in Convex and Simple Drawings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490810" target="_blank" >RIV/00216208:11320/24:10490810 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.GD.2024.5" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.5" target="_blank" >10.4230/LIPIcs.GD.2024.5</a>
Alternative languages
Result language
angličtina
Original language name
Holes in Convex and Simple Drawings
Original language description
Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erdős-Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of k-holes for simple drawings and study their existence with respect to the convexity hierarchy. We present a family of simple drawings without 4-holes and prove a generalization of Gerken's empty hexagon theorem for convex drawings. A crucial intermediate step will be the structural investigation of pseudolinear subdrawings in convex drawings.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-343-0
ISSN
1868-8969
e-ISSN
1868-8969
Number of pages
9
Pages from-to
1-9
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Wadern
Event location
Technische Universität Wien
Event date
Sep 18, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—