All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Holes in Convex and Simple Drawings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490810" target="_blank" >RIV/00216208:11320/24:10490810 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.GD.2024.5" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.5" target="_blank" >10.4230/LIPIcs.GD.2024.5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Holes in Convex and Simple Drawings

  • Original language description

    Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erdős-Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of k-holes for simple drawings and study their existence with respect to the convexity hierarchy. We present a family of simple drawings without 4-holes and prove a generalization of Gerken&apos;s empty hexagon theorem for convex drawings. A crucial intermediate step will be the structural investigation of pseudolinear subdrawings in convex drawings.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-343-0

  • ISSN

    1868-8969

  • e-ISSN

    1868-8969

  • Number of pages

    9

  • Pages from-to

    1-9

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Wadern

  • Event location

    Technische Universität Wien

  • Event date

    Sep 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article