Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491163" target="_blank" >RIV/00216208:11320/24:10491163 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PXLQMjQ0vH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PXLQMjQ0vH</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevResearch.6.023326" target="_blank" >10.1103/PhysRevResearch.6.023326</a>
Alternative languages
Result language
angličtina
Original language name
Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
Original language description
Enhancing laser energy absorption with energy transfer to fast electrons is crucial for efficient laser-driven ion acceleration. In this work, we present an experimental demonstration of volumetric laser absorption using boron nitride nanotube (BNNT) targets with an average density of 51 of the solid density. We use a PW laser system operating at a pulse duration of 1.2 ps and an energy of 1.3 kJ, reaching intensities of 2 x 1019 W cm-2 on target with moderate nanosecond contrast (109), to generate energetic ion streams from a 250 mu m thick BNNT target. To characterize laser-accelerated ions, Thomson parabola spectrometers, CR-39 nuclear track detectors, and an electron spectrometer are employed. The results are compared to those achieved using flat targets made of polystyrene (PS) of the same thickness. The comparison reveals a 1.5-fold increase in proton maximum energy and a 2.5-fold increase in the maximum energy of heavy ions (C and N) when comparing the BNNT to PS. Moreover, the high-energy ion flux recorded at CR-39 is orders of magnitude higher for the BNNT after cutting off low-energy ions with Al filters. The enhanced ion acceleration is the result of a 2.3-fold increase in the electron temperature for BNNT, as measured by the electron spectrometer. These experimental findings are further validated through two-dimensional particle-in-cell simulations, which confirm the increase in electron temperature due to enhanced laser absorption ascribable to the low density and nanostructure of the BNNT target compared to the flat foil.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA24-11398S" target="_blank" >GA24-11398S: Plasma-assisted synthesis of hybrid nanomaterials for laser-driven proton-boron nuclear fusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review Research
ISSN
2643-1564
e-ISSN
2643-1564
Volume of the periodical
6
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
023326
UT code for WoS article
001255089800005
EID of the result in the Scopus database
2-s2.0-85196971381