Speed-Robust Scheduling Revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491728" target="_blank" >RIV/00216208:11320/24:10491728 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8" target="_blank" >https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8" target="_blank" >10.4230/LIPIcs.APPROX/RANDOM.2024.8</a>
Alternative languages
Result language
angličtina
Original language name
Speed-Robust Scheduling Revisited
Original language description
Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly related machines. In the first stage, the algorithm receives the value of m and the processing times of n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to the same machine. The objective is to minimize the makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is called ρ-robust, if its makespan is always at most ρ times the optimal one. Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of 1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case when b >= m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a new special case with relatively small jobs for which we give an algorithm whose robustness is close to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs. (C) Josef Minařík and Jiří Sgall.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA24-10306S" target="_blank" >GA24-10306S: New challenges in streaming, online, and combinatorial algorithms</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-348-5
ISSN
1868-8969
e-ISSN
—
Number of pages
20
Pages from-to
—
Publisher name
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Place of publication
Germany
Event location
London
Event date
Aug 28, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—