Unlocking superior NO2 sensitivity and selectivity: the role of sulfur abstraction in indium sulfide (InS) nanosheet-based sensors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492007" target="_blank" >RIV/00216208:11320/24:10492007 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZgtCj6Oe_V" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZgtCj6Oe_V</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4ta01287a" target="_blank" >10.1039/d4ta01287a</a>
Alternative languages
Result language
angličtina
Original language name
Unlocking superior NO2 sensitivity and selectivity: the role of sulfur abstraction in indium sulfide (InS) nanosheet-based sensors
Original language description
To advance gas sensor technologies, it is essential to identify materials that exhibit both high selectivity and sensitivity. Here, we unravel the gas-sensing capabilities of indium sulfide (InS) nanosheets, particularly in relation to nitrogen dioxide (NO2) detection. Utilizing a synergistic approach that combines in situ and operando experimental methodologies with density functional theory calculations, we demonstrate that these nanosheets offer outstanding sensitivity toward NO2, characterized by a remarkably low detection threshold of 180 ppb at an operational temperature of 350 degrees C. This remarkable sensitivity is ascribed to the electronic charge redistribution around the Fermi level, facilitated by an oxygen-deficient In2O3-x surface layer that forms naturally when the InS surface is exposed to ambient conditions. A pivotal aspect of our investigation was the exploration of the influence of sulfur abstraction on these surface modifications. We demonstrate that sulfur abstraction plays a critical role in the formation and operational efficacy of the In2O3-x layer, thereby acting as a key element in the sensor mechanism. This unique surface chemistry not only amplifies the sensitivity to NO2 but also confers unparalleled selectivity over other gases and volatile organic compounds. Notably, this level of performance exceeds that of other 2D semiconductors and metal oxides, thus establishing InS nanosheets as an ideal platform for high-performance gas sensors suitable for demanding environments. Moreover, unlike many state-of-the-art sensor materials, InS-based sensors can withstand a wider variety of environmental conditions due to their superior water adsorption resistance.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2023072" target="_blank" >LM2023072: Surface Physics Laboratory – Hydrogen Technology Centre</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Volume of the periodical
12
Issue of the periodical within the volume
17
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
10329-10340
UT code for WoS article
001194962200001
EID of the result in the Scopus database
2-s2.0-85189303163