Testing MOND on Small Bodies in the Remote Solar System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492057" target="_blank" >RIV/00216208:11320/24:10492057 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x008vyeP~z" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x008vyeP~z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/ad40a3" target="_blank" >10.3847/1538-4357/ad40a3</a>
Alternative languages
Result language
angličtina
Original language name
Testing MOND on Small Bodies in the Remote Solar System
Original language description
Modified Newtonian dynamics (MOND), which postulates a breakdown of Newton's laws of gravity/dynamics below some critical acceleration threshold, can explain many otherwise puzzling observational phenomena on galactic scales. MOND competes with the hypothesis of dark matter, which successfully explains the cosmic microwave background and large-scale structure. Here we provide the first solar system test of MOND that probes the subcritical acceleration regime. Using the Bekenstein-Milgrom "aquadratic Lagrangian" (or AQUAL) formulation, we simulate the evolution of myriads of test particles (planetesimals or comets) born in the trans-Neptunian region and scattered by the giant planets over the lifetime of the Sun to heliocentric distances of 10(2)-10(5 )au. We include the effects of the Galactic tidal field and passing stars. While Newtonian simulations reproduce the distribution of binding energies of long-period and Oort-cloud comets detectable from Earth, MOND-based simulations do not. This conclusion is robust to plausible changes in the migration history of the planets, the migration history of the Sun, the MOND transition function, effects of the Sun's birth cluster, and the fading properties of long-period comets. For the most popular version of AQUAL, characterized by a gradual transition between the Newtonian and MOND regimes, our MOND-based simulations also fail to reproduce the orbital distribution of trans-Neptunian objects in the detached disk (perihelion q > 38 au). Our results do not rule out some MOND theories more elaborate than AQUAL, in which non-Newtonian effects are screened on small spatial scales, at small masses, or in external gravitational fields comparable in strength to the critical acceleration.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astrophysical Journal
ISSN
0004-637X
e-ISSN
1538-4357
Volume of the periodical
968
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
35
Pages from-to
47
UT code for WoS article
001249983300001
EID of the result in the Scopus database
2-s2.0-85196032559