All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Capabilities of a novel electrochemical cell for operando XAS and SAXS investigations for PEM fuel cells and water electrolysers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492077" target="_blank" >RIV/00216208:11320/24:10492077 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EtS4OKPzVK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EtS4OKPzVK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpowsour.2024.235070" target="_blank" >10.1016/j.jpowsour.2024.235070</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Capabilities of a novel electrochemical cell for operando XAS and SAXS investigations for PEM fuel cells and water electrolysers

  • Original language description

    Catalyst stability is a key issue in current electrochemical devices, such as fuel cells (FCs) and water electrolysers (WEs). While for FCs, the main degradation process limiting catalyst stability have been highlighted, a clear picture is still missing concerning WEs. In this framework, in operando analyses are essential to characterize catalyst degradation over time. As X-Rays constitute the perfect probe for studying catalytic materials, we here present a reversible electrochemical cell designed for operando X-Ray Absorption Spectroscopy and Small and Wide Angle X-Ray Scattering analyses, which was used: (i) to study Pt/C catalyst degradation coupling the evolution of specific electrochemically active surface area (ECSA) with catalyst morphology, supported by the analysis of Pt oxidation state. As a result, an increase of particle (and particle cluster) size is connected to the diminishing of ECSA and to the changes in the fraction of metallic-to-oxidised Pt, underlying that changes mainly develop in the first 2000 cycles of applied stress tests. Finally, (ii) we introduce some preliminary results underlying the change in Ir oxidation state for a standard Ir/IrOX catalyst material for WEs, showing as such a change is not sufficient to induce any remarkable morphological variations within 500 cycles of stress tests.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Power Sources

  • ISSN

    0378-7753

  • e-ISSN

    1873-2755

  • Volume of the periodical

    615

  • Issue of the periodical within the volume

    Sep 30

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    235070

  • UT code for WoS article

    001281956200001

  • EID of the result in the Scopus database

    2-s2.0-85199100571