All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492275" target="_blank" >RIV/00216208:11320/24:10492275 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TcWFHJp3fu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TcWFHJp3fu</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41524-024-01289-4" target="_blank" >10.1038/s41524-024-01289-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

  • Original language description

    The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (V-O) and induced small polarons on rutile TiO2(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous V-O distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing V-O-configurations are identified, which could have consequences for surface reactivity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    npj Computational Materials

  • ISSN

    2057-3960

  • e-ISSN

    2057-3960

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    89

  • UT code for WoS article

    001214855400001

  • EID of the result in the Scopus database

    2-s2.0-85192167078