All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Three paths to rational curves with rational arc length

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492503" target="_blank" >RIV/00216208:11320/24:10492503 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XHo21ysqDp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XHo21ysqDp</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2024.128842" target="_blank" >10.1016/j.amc.2024.128842</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Three paths to rational curves with rational arc length

  • Original language description

    We solve the so far open problem of constructing all spatial rational curves with rational arc length functions. More precisely, we present three different methods for this construction. The first method adapts a recent approach of (Kalkan et al. 2022) to rational PH curves and requires solving a modestly sized system of linear equations. The second constructs the curve by imposing zero -residue conditions, thus extending ideas of previous papers by (Farouki and Sakkalis 2019) and the authors themselves (Schr &amp; ouml;cker and &amp; Scaron;&amp; iacute;r 2023). The third method generalizes the dual approach of (Pottmann 1995) from planar to spatial curves. The three methods share the same quaternion based representation in which not only the PH curve but also its arc length function are compactly expressed. We also present a new proof based on the quaternion polynomial factorization theory of the well known characterization of the Pythagorean quadruples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics and Computation

  • ISSN

    0096-3003

  • e-ISSN

    1873-5649

  • Volume of the periodical

    478

  • Issue of the periodical within the volume

    1 October 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    128842

  • UT code for WoS article

    001246609500001

  • EID of the result in the Scopus database

    2-s2.0-85193906087