Strong solutions and attractor dimension for 2D NSE with dynamic boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492758" target="_blank" >RIV/00216208:11320/24:10492758 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L6N5xubGCe" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L6N5xubGCe</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00028-024-00948-9" target="_blank" >10.1007/s00028-024-00948-9</a>
Alternative languages
Result language
angličtina
Original language name
Strong solutions and attractor dimension for 2D NSE with dynamic boundary conditions
Original language description
We consider incompressible Navier-Stokes equations in a bounded 2D domain, complete with the so-called dynamic slip boundary conditions. Assuming that the data are regular, we show that weak solutions are strong. As an application, we provide an explicit upper bound of the fractal dimension of the global attractor in terms of the physical parameters. These estimates comply with analogous results in the case of Dirichlet boundary condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-11027X" target="_blank" >GX20-11027X: Mathematical analysis of partial differential equations describing far-from-equilibrium open systems in continuum thermodynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Evolution Equations
ISSN
1424-3199
e-ISSN
1424-3202
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
44
Pages from-to
20
UT code for WoS article
001186524700009
EID of the result in the Scopus database
2-s2.0-85187919640