Predicate Sense Disambiguation for UMR Annotation of Latin: Challenges and Insights
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492856" target="_blank" >RIV/00216208:11320/24:10492856 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.ml4al-1.3/" target="_blank" >https://aclanthology.org/2024.ml4al-1.3/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Predicate Sense Disambiguation for UMR Annotation of Latin: Challenges and Insights
Original language description
This paper explores the possibility to exploit different Pretrained Language Models (PLMs) to assist in a manual annotation task consisting in assigning the appropriate sense to verbal predicates in a Latin text. Indeed, this represents a crucial step when annotating data according to the Uniform Meaning Representation (UMR) framework, designed to annotate the semantic content of a text in a cross-linguistic perspective. We approach the study as a Word Sense Disambiguation task, with the primary goal of assessing the feasibility of leveraging available resources for Latin to streamline the labor-intensive annotation process. Our methodology revolves around the exploitation of contextual embeddings to compute token similarity, under the assumption that predicates sharing a similar sense would also share their context of occurrence. We discuss our findings, emphasizing applicability and limitations of this approach in the context of Latin, for which the limited amount of available resources poses additi
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX20-16819X" target="_blank" >GX20-16819X: Language Understanding: from Syntax to Discourse</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 1st Workshop on Machine Learning for Ancient Languages
ISBN
979-8-89176-144-5
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
19-29
Publisher name
Association for Computational Linguistics
Place of publication
Kerrville, TX, USA
Event location
Bangkok, Thailand
Event date
Aug 15, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—