All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492868" target="_blank" >RIV/00216208:11320/24:10492868 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.acl-long.651" target="_blank" >https://aclanthology.org/2024.acl-long.651</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation

  • Original language description

    We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation, i.e., generating coherent and relevant text from structured data. To avoid the issue of LLM training data contamination with standard benchmarks, we design QUINTD – a tool for collecting novel structured data records from public APIs. We find that open LLMs (Llama 2, Mistral, and Zephyr) can generate fluent and coherent texts in zero-shot settings from data in common formats collected with QUINTD. However, we show that the semantic accuracy of the outputs is a major issue: both according to human annotators and our reference-free metric based on GPT-4, more than 80% of the outputs of open LLMs contain at least one semantic error. We publicly release the code, data, and model outputs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

  • ISBN

    979-8-89176-094-3

  • ISSN

  • e-ISSN

  • Number of pages

    28

  • Pages from-to

    12045-12072

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Kerrville, TX, USA

  • Event location

    Bangkok, Thailand

  • Event date

    Aug 11, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article