All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Unified Uni- and Multi-modal News Headline Generation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492875" target="_blank" >RIV/00216208:11320/24:10492875 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.findings-eacl.30.pdf" target="_blank" >https://aclanthology.org/2024.findings-eacl.30.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Unified Uni- and Multi-modal News Headline Generation

  • Original language description

    Thanks to the recent progress in vision-language modeling and the evolving nature of news consumption, the tasks of automatic summarization and headline generation based on multimodal news articles have been gaining popularity. One of the limitations of the current approaches is caused by the commonly used sophisticated modular architectures built upon hierarchical cross-modal encoders and modality-specific decoders, which restrict the model&apos;s applicability to specific data modalities - once trained on, e.g., text+video pairs there is no straightforward way to apply the model to text+image or text-only data. In this work, we propose a unified task formulation that utilizes a simple encoder-decoder model to generate headlines from uni- and multi-modal news articles. This model is trained jointly on data of several modalities and extends the textual decoder to handle the multimodal output.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Findings of the Association for Computational Linguistics: EACL 2024

  • ISBN

    979-8-89176-093-6

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    437-450

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    St. Julians, Malta

  • Event date

    Mar 17, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article