All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multilingual Text Style Transfer: Datasets & Models for Indian Languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492886" target="_blank" >RIV/00216208:11320/24:10492886 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.inlg-main.41" target="_blank" >https://aclanthology.org/2024.inlg-main.41</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multilingual Text Style Transfer: Datasets & Models for Indian Languages

  • Original language description

    Text style transfer (TST) involves altering the linguistic style of a text while preserving its style-independent content. This paper focuses on sentiment transfer, a popular TST subtask, across a spectrum of Indian languages: Hindi, Magahi, Malayalam, Marathi, Punjabi, Odia, Telugu, and Urdu, expanding upon previous work on English-Bangla sentiment transfer. We introduce dedicated datasets of 1,000 positive and 1,000 negative style-parallel sentences for each of these eight languages. We then evaluate the performance of various benchmark models categorized into parallel, non-parallel, cross-lingual, and shared learning approaches, including the Llama2 and GPT-3.5 large language models (LLMs). Our experiments highlight the significance of parallel data in TST and demonstrate the effectiveness of the Masked Style Filling (MSF) approach in non-parallel techniques. Moreover, cross-lingual and joint multilingual learning methods show promise, offering insights into selecting optimal models tailored to the

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th International Natural Language Generation Conference

  • ISBN

    979-8-89176-122-3

  • ISSN

  • e-ISSN

  • Number of pages

    29

  • Pages from-to

    494-522

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Kerrville, TX, USA

  • Event location

    Tokyo, Japan

  • Event date

    Sep 23, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article