Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492898" target="_blank" >RIV/00216208:11320/24:10492898 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.alvr-1.9.pdf" target="_blank" >https://aclanthology.org/2024.alvr-1.9.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples
Original language description
Current vision-language models leveraging contrastive learning often face limitations in developing fine-grained conceptual understanding. This is due to random negative samples during pretraining, causing almost exclusively very dissimilar concepts to be compared in the loss function. Consequently, the models struggle with fine-grained semantic differences. To address this problem, we introduce a novel pretraining method incorporating synthetic hard negative text examples. The hard negatives replace terms corresponding to visual concepts, leading to a more fine-grained visual and textual concept alignment. Further, we introduce InpaintCOCO, a new challenging dataset for assessing the fine-grained alignment of colors, objects, and sizes in vision-language models. We created the dataset using generative inpainting from COCO images by changing the visual concepts so that the images no longer match their original captions. Our results show significant improvements in fine-grained concept understanding ac
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The 3rd Workshop on Advances in Language and Vision Research: Proceedings of the Workshop
ISBN
979-8-89176-153-7
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
102-115
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
Kerrville, TX, USA
Event location
Bangkok, Thailand
Event date
Aug 16, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—