All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised Extraction of Morphological Categories for Morphemes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492904" target="_blank" >RIV/00216208:11320/24:10492904 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70563-2_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70563-2_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70563-2_19" target="_blank" >10.1007/978-3-031-70563-2_19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised Extraction of Morphological Categories for Morphemes

  • Original language description

    Words in natural language can be assigned to specific morphological categories. For example, the English word &apos;apples&apos; can be described using morphological labels like N;PL. The conditional probabilities on such word forms given the labels would reveal for English that the morpheme &apos;s&apos; is present almost always when the label N;PL appears. This indicates that the morphological properties of a word can be traced to its morphemes. We do not have any data resource that associates morphemes with morphological categories. We use UniMorph schema and datasets for universal morphological annotation as a source of morphological categories and morpheme segmentation. We align morphemes (or exponents) with the corresponding morphological categories based on the UniMorph schema for 12 languages. Given the multilingual nature of the task, we utilize unsupervised methods based on the INCREMENT P measure and IBM Models as we test out the effectiveness of alignment methods used in statistical machine translation. Our results in

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    27th International Conference on Text, Speech and Dialogue

  • ISBN

    978-3-031-70563-2

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    239-251

  • Publisher name

    Springer

  • Place of publication

    Cham, Switzerland

  • Event location

    Brno, Czechia

  • Event date

    Sep 11, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article