All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CWRCzech: 100M Query-Document Czech Click Dataset and Its Application to Web Relevance Ranking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492913" target="_blank" >RIV/00216208:11320/24:10492913 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1145/3626772.3657851" target="_blank" >https://doi.org/10.1145/3626772.3657851</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3626772.3657851" target="_blank" >10.1145/3626772.3657851</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CWRCzech: 100M Query-Document Czech Click Dataset and Its Application to Web Relevance Ranking

  • Original language description

    We present CWRCzech, Click Web Ranking dataset for Czech, a 100M query–document Czech click dataset for relevance ranking with user behavior data collected in web search engine production. To the best of our knowledge, CWRCzech is the largest click dataset with raw text published so far. It provides document positions in the search results as well as information about user behavior: 27.6M clicked documents and 10.8M dwell times. In addition, we also publish a manually annotated Czech test for the relevance task, containing nearly 50k query–document pairs, each annotated by at least 2 annotators. Finally, we analyze how the user behavior data improve relevance ranking and show that models trained on data automatically harnessed at sufficient scale can surpass the performance of models trained on human annotated data. CWRCzech is published under an academic non-commercial license and is available to the research community.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX20-16819X" target="_blank" >GX20-16819X: Language Understanding: from Syntax to Discourse</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval

  • ISBN

    979-8-4007-0431-4

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1221-1231

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    New York, NY, USA

  • Event location

    Washington DC, USA

  • Event date

    Jul 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001273410001030