On the smoothness of slowly varying functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492976" target="_blank" >RIV/00216208:11320/24:10492976 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dSfLDO2wki" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dSfLDO2wki</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091524000348" target="_blank" >10.1017/S0013091524000348</a>
Alternative languages
Result language
angličtina
Original language name
On the smoothness of slowly varying functions
Original language description
In this paper, we consider the question of smoothness of slowly varying functions satisfying the modern definition that, in the last two decades, gained prevalence in the applications concerning function spaces and interpolation. We show that every slowly varying function of this type is equivalent to a slowly varying function that has continuous classical derivatives of all orders.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
1464-3839
Volume of the periodical
2024
Issue of the periodical within the volume
67
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
876-891
UT code for WoS article
001226184000001
EID of the result in the Scopus database
2-s2.0-85193714310