Compressible fluids interacting with 3D visco-elastic bulk solids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492982" target="_blank" >RIV/00216208:11320/24:10492982 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ILZCNgTrD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ILZCNgTrD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-024-02886-w" target="_blank" >10.1007/s00208-024-02886-w</a>
Alternative languages
Result language
angličtina
Original language name
Compressible fluids interacting with 3D visco-elastic bulk solids
Original language description
We consider the physical setup of a three-dimensional fluid-structure interaction problem. A viscous compressible gas or liquid interacts with a nonlinear, visco-elastic, three-dimensional bulk solid. The latter is described by an evolution with inertia, a non-linear dissipation term and a term that relates to a non-convex elastic energy functional. The fluid is modelled by the compressible Navier-Stokes equations with a barotropic pressure law. Due to the motion of the solid, the fluid domain is time-changing. Our main result is the long-time existence of a weak solution to the coupled system until the time of a collision. The nonlinear coupling between the motions of the two different matters is established via the method of minimising movements. The motion of both the solid and the fluid is chosen via an incrimental minimization with respect to dissipative and static potentials. These variational choices together with a careful construction of an underlying flow map for our approximation then directly result in the pressure gradient and the material time derivatives.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
390
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
58
Pages from-to
5495-5552
UT code for WoS article
001222362500001
EID of the result in the Scopus database
2-s2.0-85192984295