All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modulo-counting first-order logic on bounded expansion classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493130" target="_blank" >RIV/00216208:11320/24:10493130 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mb_YEFUzo-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mb_YEFUzo-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2023.113700" target="_blank" >10.1016/j.disc.2023.113700</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modulo-counting first-order logic on bounded expansion classes

  • Original language description

    We prove that, on bounded expansion classes, every first-order formula with modulo counting is equivalent, in a linear-time computable monadic expansion, to an existential first-order formula. As a consequence, we derive, on bounded expansion classes, that first-order transductions with modulo counting have the same encoding power as existential first-order transductions. Also, modulo-counting first-order model checking and computation of the size of sets definable in modulo-counting first-order logic can be achieved in linear time on bounded expansion classes. As an application, we prove that a class has structurally bounded expansion if and only if it is a class of bounded depth vertex-minors of graphs in a bounded expansion class. We also show how our results can be used to implement fast matrix calculus on bounded expansion matrices over a finite field.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Volume of the periodical

    347

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    113700

  • UT code for WoS article

    001252004400001

  • EID of the result in the Scopus database

    2-s2.0-85171661362