All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Structure of Hamiltonian Graphs with Small Independence Number

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493336" target="_blank" >RIV/00216208:11320/24:10493336 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-63021-7_14" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63021-7_14" target="_blank" >10.1007/978-3-031-63021-7_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Structure of Hamiltonian Graphs with Small Independence Number

  • Original language description

    A Hamiltonian path (cycle) in a graph is a path (cycle, respectively) which passes through all of its vertices. The problems of deciding the existence of a Hamiltonian cycle (path) in an input graph are well known to be NP-complete, and restricted classes of graphs which allow for their polynomial-time solutions are intensively investigated. Until very recently the complexity was open even for graphs of independence number at most 3. A so far unpublished result of Jedlickova and Kratochvil [arXiv:2309.09228] shows that for every integer k, the problems of deciding the existence of a Hamiltonian path and cycle are polynomial-time solvable in graphs of independence number bounded by k. As a companion structural result, in this paper, we determine explicit obstacles for the existence of a Hamiltonian path for small values of k, namely for graphs of independence number 2, 3, and 4. Identifying these obstacles in an input graph yields alternative polynomial-time algorithms for deciding the existence of a Hamiltonian path with no large hidden multiplicative constants.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    COMBINATORIAL ALGORITHMS, IWOCA 2024

  • ISBN

    978-3-031-63020-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    180-192

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Ischia

  • Event date

    Jul 1, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001282050500014