All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fully-Scalable MPC Algorithms for Clustering in High Dimension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493446" target="_blank" >RIV/00216208:11320/24:10493446 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2024.50" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2024.50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2024.50" target="_blank" >10.4230/LIPIcs.ICALP.2024.50</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fully-Scalable MPC Algorithms for Clustering in High Dimension

  • Original language description

    We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ &gt; 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds.We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML&apos;18; Cohen-Addad et al., NeurIPS&apos;21; Cohen-Addad et al., ICML&apos;22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε2)-factor of the optimum for k clusters.A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS&apos;22].

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-22997S" target="_blank" >GA22-22997S: Efficient and Realistic Models in Computational Social Choice</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-322-5

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

    1-20

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Tallin, Estonsko

  • Event date

    Jul 8, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article